Neural models of memory.

نویسندگان

  • M E Hasselmo
  • J L McClelland
چکیده

Neural models assist in characterizing the processes carried out by cortical and hippocampal memory circuits. Recent models of memory have addressed issues including recognition and recall dynamics, sequences of activity as the unit of storage, and consolidation of intermediate-term episodic memory into long-term memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computational Pattern Separation Models of Dentate Gyrus Neural Subpopulation in the Hippocampus

Hippocampus is a part of the brain that has an essential role in memory and learning. It is involved in many cognitive and behavioral phenomena, including the pattern separation process: the ability to distinguish patterns with very high similarity. The present study compared the models of pattern separation in the dentate gyrus of the hippocampus and aimed to investigate the significant cel...

متن کامل

Using Neural Network to Determine Input Excesses, Output Shortfalls and Efficiency of Dmus in Russell Mode

Data Envelopment Analysis (DEA) has two fundamental approaches for assessing theefficiency with different characteristics; radial and non-radial models. This paper isconcerned the non-radial model of Russell which is a non linear model. Conventional DEAfor a large dataset with many inputs/outputs would require huge computer resources in termsof memory and CPU time. Artificial Neural Network (AN...

متن کامل

A Higher Order Online Lyapunov-Based Emotional Learning for Rough-Neural Identifiers

o enhance the performances of rough-neural networks (R-NNs) in the system identification‎, ‎on the base of emotional learning‎, ‎a new stable learning algorithm is developed for them‎. ‎This algorithm facilitates the error convergence by increasing the memory depth of R-NNs‎. ‎To this end‎, ‎an emotional signal as a linear combination of identification error and its differences is used to achie...

متن کامل

Comparative Study of Static and Dynamic Artificial Neural Network Models in Forecasting of Tehran Stock Exchange

During the recent decades, neural network models have been focused upon by researchers due to their more real performance and on this basis, different types of these models have been used in forecasting. Now, there is a question that which kind of these models has more explanatory power in forecasting the future processes of the stock. In line with this, the present paper made a comparison betw...

متن کامل

Machine Learning Models for Housing Prices Forecasting using Registration Data

This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...

متن کامل

Gyroscope Random Drift Modeling, using Neural Networks, Fuzzy Neural and Traditional Time- series Methods

In this paper statistical and time series models are used for determining the random drift of a dynamically Tuned Gyroscope (DTG). This drift is compensated with optimal predictive transfer function. Also nonlinear neural-network and fuzzy-neural models are investigated for prediction and compensation of the random drift. Finally the different models are compared together and their advantages a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current opinion in neurobiology

دوره 9 2  شماره 

صفحات  -

تاریخ انتشار 1999